Estimates of Invariant Metrics on Pseudoconvex Domains near Boundaries with Constant Levi Ranks
نویسنده
چکیده
Estimates of the Bergman kernel and the Bergman and Kobayashi metrics on pseudoconvex domains near boundaries with constant Levi ranks are given. Mathematics Subject Classification (2000): 32F45; 32T27.
منابع مشابه
Conformal equivalence of visual metrics in pseudoconvex domains
We refine estimates introduced by Balogh and Bonk, to show that the boundary extensions of isometries between smooth strongly pseudoconvex domains in C are conformal with respect to the sub-Riemannian metric induced by the Levi form. As a corollary we obtain an alternative proof of a result of Fefferman on smooth extensions of biholomorphic mappings between pseudoconvex domains. The proofs are ...
متن کاملEstimates for the Bergman and Szegö Projections for Pseudoconvex Domains of Finite Type with Locally Diagonalizable Levi Form
This paper deals with precise mapping properties of the Bergman and Szegö projections of pseudo-convex domains of finite type in C whose Levi form are locally diagonalizable at every point of the boundary (see Section 2 for a precise definition). We obtain sharp estimates for these operators for usual Lpk Sobolev spaces, classical Lipschitz spaces Λα and nonisotropic Lipschitz spaces Γα related...
متن کاملBoundary Behavior of the Bergman Kernel Function on Some Pseudoconvex Domains in C "
Let il be a bounded pseudoconvex domain in C" with smooth denning function r and let zo 6 bCl be a point of finite type. We also assume that the Levi form ddr(z) of bil has (n — 2)-positive eigenvalues at z0 . Then we get a quantity which bounds from above and below the Bergman kernel function in a small constant and large constant sense.
متن کاملAsymptotic Boundary Behavior of the Bergman Curvatures of a Pseudoconvex Domain
We present a method of obtaining a lower bound estimate of the curvatures of the Bergman metric without using the regularity of the kernel function on the boundary. As an application, we prove the existence of an uniform lower bound of the bisectional curvatures of the Bergman metric of a smooth bounded pseudoconvex domain near the boundary with constant Levi rank.
متن کاملOn the Growth of the Bergman Kernel near an Infinite-type Point
We study diagonal estimates for the Bergman kernels of certain model domains in C near boundary points that are of infinite type. To do so, we need a mild structural condition on the defining functions of interest that facilitates optimal upper and lower bounds. This is a mild condition; unlike earlier studies of this sort, we are able to make estimates for non-convex pseudoconvex domains as we...
متن کامل